tartuNLP/reddit-anhedonia by huggingface-mirror (hf-mirror)
Focusing on the PRIMATE dataset, our study reveals concerns regarding annotation validity, particularly for the lack of interest or pleasure symptom. Through re-annotation by a mental health professional, we introduce finer labels and textual spans as evidence, identifying a notable number of false positives. Our refined annotations offer a higher-quality test set for anhedonia detection. This study underscores the necessity of addressing annotation quality issues in mental health datasets, advocating for improved methodologies to enhance NLP model reliability in mental health assessments. A mental health professional (MHP) read all the posts in the subset and labelled them for the presence of loss of interest or pleasure (anhedonia). The MHP assigned three labels to each post: a) 'mentioned' if the symptom is talked about in the text, but it is not possible to infer its duration or intensity; b) 'answerable' if there is clear evidence of anhedonia; c) 'writer's symptoms' which shows whether the author of the post discusses themselves or a third person. Additionally, the MHP selected the part of the text that supports the positive label.
Psy-Insight is a bilingual, interpretable multi-turn dataset for mental health counseling dialogues. It includes 6,208 rounds of multi-turn counseling dialogues in English and 5,776 rounds in Chinese, annotated with step-by-step reasoning labels and multi-task labels. This dataset is designed to support the application of large language models in mental health and is suitable for tasks such as emotion classification and psychological treatment interpretation.
Every veteran knows and has had a 'Gunny': Semper Fidelis. This dataset is designed for conversational AI systems to assist veterans from various military branches, including U.S. and U.K. armed forces.
Psychology Wiki Datasetpsychology_wiki数据集的构建基于心理学领域的英文维基百科内容,通过系统化的数据采集与整理,确保了信息的广泛覆盖与深度挖掘。数据集中的每一篇文章均经过严格的筛选与标注,涵盖了标题、正文、相关性、受欢迎程度及排名等多个维度,为心理学研究提供了丰富的文本资源。