The SimpleToM dataset is designed to evaluate models' ability to reason about beliefs and actions in various scenarios. It includes a variety of situations with multiple choice questions and answers, covering topics such as food items, personal belongings, and service industries.
The SimpleToM dataset provides a comprehensive set of scenarios to test models' understanding of beliefs and actions. Each scenario includes a context, a question, and multiple choice answers, making it suitable for researchers working on theory of mind and natural language processing. The dataset is available on Hugging Face, ensuring easy access and integration with existing models.
An evolving list of electronic media datasets used to model mental health status. This repository curates a variety of datasets from different sources, including social media platforms, online forums, and academic studies, to support research in mental health modeling and AI applications.
Psy-Insight is a bilingual, interpretable multi-turn dataset for mental health counseling dialogues. It includes 6,208 rounds of multi-turn counseling dialogues in English and 5,776 rounds in Chinese, annotated with step-by-step reasoning labels and multi-task labels. This dataset is designed to support the application of large language models in mental health and is suitable for tasks such as emotion classification and psychological treatment interpretation.
SoulChat2.0 is a framework for constructing the digital twin of psychological counselors, designed to support the development of AI applications in mental health. It includes a data generation module and a modeling module, enabling the creation of personalized counseling models based on limited real-world counseling cases.