FineWeb is a dataset of over 15 trillion tokens of cleaned and deduplicated English web data from CommonCrawl. It is optimized for LLM performance and processed using the datatrove library. The dataset aims to provide high-quality data for training large language models and outperforms other commonly used web datasets.We’re on a journey to advance and democratize artificial intelligence through open source and open science.
FineWeb is a large-scale dataset designed to provide high-quality web data for training large language models. It includes over 15 trillion tokens of cleaned and deduplicated English web data from CommonCrawl. The dataset is processed using the datatrove library and is optimized for LLM performance. It outperforms other commonly used web datasets in benchmark tasks.
The IC-AnnoMI repository contains source code and a synthetic dataset generated through in-context zero-shot LLM prompting for mental health and therapeutic counselling. IC-AnnoMI is a project that generates contextual MI dialogues using large language models (LLMs). The project contains source code and a synthetic dataset generated through zero-shot prompts, aiming to address the data scarcity and inherent bias problems in mental health and therapeutic consultation.
FineWeb-2 is a dataset of over 15 trillion tokens of cleaned and deduplicated English web data from CommonCrawl. This is the second iteration of the popular 🍷 FineWeb dataset, bringing high quality pretraining data to over 1000 🗣️ languages.The 🥂 FineWeb2 dataset is fully reproducible, available under the permissive ODC-By 1.0 license and extensively validated through hundreds of ablation experiments.In particular, on the set of 9 diverse languages we used to guide our processing decisions, 🥂 FineWeb2 outperforms other popular pretraining datasets covering multiple languages (such as CC-100, mC4, CulturaX or HPLT, while being substantially larger) and, in some cases, even performs better than some datasets specifically curated for a single one of these languages, in our diverse set of carefully selected evaluation tasks: FineTasks.
This study surveys the attitudes and behaviors of US higher education faculty members regarding online resources, the library, and related topics. It covers a wide range of issues, including faculty dependence on electronic scholarly resources, the transition from print to electronic journals, publishing preferences, e-books, and the preservation of scholarly journals.