This repository provides code and data for automatic depression detection using a GRU/BiLSTM-based model. It includes an emotional audio-textual corpus designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder.
The ICASSP2022-Depression project presents a comprehensive approach to automatic depression detection using deep learning techniques. The repository includes a GRU/BiLSTM-based model and an emotional audio-textual corpus, making it a valuable resource for researchers working on mental health and natural language processing.
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
FineWeb is a dataset of over 15 trillion tokens of cleaned and deduplicated English web data from CommonCrawl. It is optimized for LLM performance and processed using the datatrove library. The dataset aims to provide high-quality data for training large language models and outperforms other commonly used web datasets.We’re on a journey to advance and democratize artificial intelligence through open source and open science.
Lingxin (SoulChat) is a psychological health large model fine-tuned with millions of Chinese long-text instructions and multi-turn empathetic dialogue data in the field of psychological counseling.