An evolving list of electronic media datasets used to model mental health status. This repository curates a variety of datasets from different sources, including social media platforms, online forums, and academic studies, to support research in mental health modeling and AI applications.
The Mental Health Datasets repository is a curated list of datasets that can be used to model and analyze mental health status. It includes datasets from various sources such as Reddit, Twitter, and online support forums, covering a wide range of mental health conditions like depression, anxiety, and suicidal ideation. This resource is invaluable for researchers and developers working on AI models for mental health support and intervention.For an overview of existing datasets, please consider reading the paper 'On the State of Social Media Data for Mental Health Research'.
This project implements the conversion algorithm from the ToMi dataset to the T4D (Thinking is for Doing) dataset, as introduced in the paper https://arxiv.org/abs/2310.03051. It filters examples with Theory of Mind (ToM) questions and adapts the algorithm to account for second-order false beliefs.
This repository provides code and data for automatic depression detection using a GRU/BiLSTM-based model. It includes an emotional audio-textual corpus designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder.
The Emotional First Aid Raw Dataset is a collection of raw, unannotated psychological counseling Q&A data, designed to support research in AI applications for mental health. It contains over 172,000 topics with 2,381,273 messages, totaling 44,514,786 characters, providing a rich source of data for natural language processing and AI development.