The DS4C dataset is a structured collection of COVID-19 data from South Korea, based on reports from the Korea Centers for Disease Control & Prevention (KCDC) and local governments. It includes information on infections, patient routes, and various analyses. The dataset has been used for multiple research and visualization projects.
The Data Science for COVID-19 (DS4C) project provides a comprehensive dataset for analyzing the COVID-19 pandemic in South Korea. The dataset includes detailed information on infections, patient routes, and other relevant data. It has been used for various research and visualization projects, including competitions and academic studies. The data is sourced from the KCDC and local governments, ensuring accuracy and reliability.
HeartLink is an empathetic psychological model that uses a large language model fine-tuned on a large empathetic Q&A dataset. It can perceive users' emotions and experiences during conversations and provide empathetic responses using rich psychological knowledge, aiming to understand, comfort, and support users. The responses include emoji expressions to bridge the gap with users, offering psychological support and help during consultations.
This dataset contains 20,000 labelled English tweets of depressed and non-depressed users. The data is collected using the Twitter API and includes feature extraction techniques such as topic modelling and emoji sentiment analysis. It is designed for mental health classification at the tweet level.
The DAIC-WOZ dataset contains clinical interviews designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder. This repository provides code for extracting question-level features from the DAIC-WOZ dataset, which can be used for multimodal analysis of depression levels.