SoulChat2.0 is a framework for constructing the digital twin of psychological counselors, designed to support the development of AI applications in mental health. It includes a data generation module and a modeling module, enabling the creation of personalized counseling models based on limited real-world counseling cases.
SoulChat2.0 is a significant advancement in the field of mental health AI, offering a novel approach to building digital twins of psychological counselors. The framework leverages advanced LLMs to generate high-quality synthetic data that captures the language style and therapeutic techniques of specific counselors. This data is then used to fine-tune models, resulting in AI systems that can provide personalized and effective counseling support.
The DAIC-WOZ dataset contains clinical interviews designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder. This repository provides code for extracting question-level features from the DAIC-WOZ dataset, which can be used for multimodal analysis of depression levels.
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
PsychData is an online platform for hosting and conducting surveys and experiments in psychology, supporting secure data collection for researchers and students.