tartuNLP/Reddit Anhedonia Dataset - hf-mirror

tartuNLP/Reddit Anhedonia Dataset - hf-mirror

tartuNLP/reddit-anhedonia by huggingface-mirror (hf-mirror)

tartuNLP/Reddit Anhedonia Dataset - hf-mirror

Podrobný úvod

Focusing on the PRIMATE dataset, our study reveals concerns regarding annotation validity, particularly for the lack of interest or pleasure symptom. Through re-annotation by a mental health professional, we introduce finer labels and textual spans as evidence, identifying a notable number of false positives. Our refined annotations offer a higher-quality test set for anhedonia detection. This study underscores the necessity of addressing annotation quality issues in mental health datasets, advocating for improved methodologies to enhance NLP model reliability in mental health assessments. A mental health professional (MHP) read all the posts in the subset and labelled them for the presence of loss of interest or pleasure (anhedonia). The MHP assigned three labels to each post: a) 'mentioned' if the symptom is talked about in the text, but it is not possible to infer its duration or intensity; b) 'answerable' if there is clear evidence of anhedonia; c) 'writer's symptoms' which shows whether the author of the post discusses themselves or a third person. Additionally, the MHP selected the part of the text that supports the positive label.

Více
Datová sada

Mental Health in Tech Survey
Zobrazit podrobnosti

Mental Health in Tech Survey

This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.

Chinese Psychological QA DataSet - GitHub Repository
Zobrazit podrobnosti

Chinese Psychological QA DataSet - GitHub Repository

The Chinese Psychological QA DataSet is a collection of 102,845 community Q&A pairs related to psychological topics., providing a rich source of data for research and development in psychological counseling and AI applications. Each entry includes detailed question and answer information, making it a valuable resource for understanding user queries and generating appropriate responses.

IC-AnnoMI: In-Context MI Dialogues - GitHub Repository
Zobrazit podrobnosti

IC-AnnoMI: In-Context MI Dialogues - GitHub Repository

The IC-AnnoMI repository contains source code and a synthetic dataset generated through in-context zero-shot LLM prompting for mental health and therapeutic counselling. IC-AnnoMI is a project that generates contextual MI dialogues using large language models (LLMs). The project contains source code and a synthetic dataset generated through zero-shot prompts, aiming to address the data scarcity and inherent bias problems in mental health and therapeutic consultation.

Klíčová slova

Reddit AnhedoniaDatasetHugging FacePRIMATEtartuNLP

Sdílet