This repository provides code and data for automatic depression detection using a GRU/BiLSTM-based model. It includes an emotional audio-textual corpus designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder.
The ICASSP2022-Depression project presents a comprehensive approach to automatic depression detection using deep learning techniques. The repository includes a GRU/BiLSTM-based model and an emotional audio-textual corpus, making it a valuable resource for researchers working on mental health and natural language processing.
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
This study surveys the attitudes and behaviors of US higher education faculty members regarding online resources, the library, and related topics. It covers a wide range of issues, including faculty dependence on electronic scholarly resources, the transition from print to electronic journals, publishing preferences, e-books, and the preservation of scholarly journals.
PsychData is an online platform for hosting and conducting surveys and experiments in psychology, supporting secure data collection for researchers and students.