This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
The dataset tracks key measures such as age, gender, and country to determine overall prevalence, along with responses surrounding employee access to care options; whether mental health or physical illness are being taken as seriously by employers; whether or not anonymity is protected with regards to seeking help; and how coworkers may perceive those struggling with mental illness issues such as depression or anxiety. With an ever-evolving landscape due to new technology advancing faster than ever before – these statistics have never been more important for us to analyze if we hope to remain true promoters of a healthy world inside and outside our office walls.
An evolving list of electronic media datasets used to model mental health status. This repository curates a variety of datasets from different sources, including social media platforms, online forums, and academic studies, to support research in mental health modeling and AI applications.
The IC-AnnoMI repository contains source code and a synthetic dataset generated through in-context zero-shot LLM prompting for mental health and therapeutic counselling. IC-AnnoMI is a project that generates contextual MI dialogues using large language models (LLMs). The project contains source code and a synthetic dataset generated through zero-shot prompts, aiming to address the data scarcity and inherent bias problems in mental health and therapeutic consultation.
PsychData is an online platform for hosting and conducting surveys and experiments in psychology, supporting secure data collection for researchers and students.