The ToM QA Dataset is designed to evaluate question-answering models' ability to reason about beliefs. It includes 3 task types and 4 question types, creating 12 total scenarios. The dataset is inspired by theory-of-mind experiments in developmental psychology and is used to test models' understanding of beliefs and inconsistent states of the world.
The ToM QA Dataset, introduced in the EMNLP 2018 paper 'Evaluating Theory of Mind in Question Answering', provides a comprehensive set of scenarios to test question-answering models. The dataset includes first-order and second-order belief questions, as well as memory and reality questions, to ensure models have a correct understanding of the state of the world and others' beliefs. It is available in four versions: easy with noise, easy without noise, hard with noise, and hard without noise.
The ISSP is a cross-national collaboration program conducting annual surveys on diverse topics relevant to social sciences. Established in 1984, it includes members from various cultures around the globe. Over one million respondents have participated in ISSP surveys, and all collected data and documentation are available free of charge.
The DS4C dataset is a structured collection of COVID-19 data from South Korea, based on reports from the Korea Centers for Disease Control & Prevention (KCDC) and local governments. It includes information on infections, patient routes, and various analyses. The dataset has been used for multiple research and visualization projects.
The iBVP dataset is a collection of synchronized RGB and thermal infrared videos with PPG ground-truth signals acquired from an ear. It includes manual signal quality labels and dense signal-quality assessment using the SQA-PhysMD model. The dataset is designed to induce real-world variations in psycho-physiological states and head movement.