This project implements the conversion algorithm from the ToMi dataset to the T4D (Thinking is for Doing) dataset, as introduced in the paper https://arxiv.org/abs/2310.03051. It filters examples with Theory of Mind (ToM) questions and adapts the algorithm to account for second-order false beliefs.
The t4d project is a direct implementation of the conversion algorithm from the ToMi dataset to the T4D dataset. It is designed to filter and process examples that involve Theory of Mind questions, providing a valuable resource for researchers working on cognitive and social AI models. The project is built to convert a predefined dataset A (ToMi) to dataset B (T4D) and is licensed under the Apache License, Version 2.0.
Psych-101 is a dataset of natural language transcripts from human psychological experiments, comprising trial-by-trial data from 160 experiments and 60,092 participants, making 10,681,650 choices. It provides valuable insights into human decision-making processes and is available under the Apache License 2.0.
Psychology LLM、LLM、The Big Model of Mental Health、Finetune、InternLM2、InternLM2.5、Qwen、ChatGLM、Baichuan、DeepSeek、Mixtral、LLama3、GLM4、Qwen2 - SmartFlowAI/EmoLLM
FineWeb-2 is a dataset of over 15 trillion tokens of cleaned and deduplicated English web data from CommonCrawl. This is the second iteration of the popular 🍷 FineWeb dataset, bringing high quality pretraining data to over 1000 🗣️ languages.The 🥂 FineWeb2 dataset is fully reproducible, available under the permissive ODC-By 1.0 license and extensively validated through hundreds of ablation experiments.In particular, on the set of 9 diverse languages we used to guide our processing decisions, 🥂 FineWeb2 outperforms other popular pretraining datasets covering multiple languages (such as CC-100, mC4, CulturaX or HPLT, while being substantially larger) and, in some cases, even performs better than some datasets specifically curated for a single one of these languages, in our diverse set of carefully selected evaluation tasks: FineTasks.