The ToM QA Dataset is designed to evaluate question-answering models' ability to reason about beliefs. It includes 3 task types and 4 question types, creating 12 total scenarios. The dataset is inspired by theory-of-mind experiments in developmental psychology and is used to test models' understanding of beliefs and inconsistent states of the world.
The ToM QA Dataset, introduced in the EMNLP 2018 paper 'Evaluating Theory of Mind in Question Answering', provides a comprehensive set of scenarios to test question-answering models. The dataset includes first-order and second-order belief questions, as well as memory and reality questions, to ensure models have a correct understanding of the state of the world and others' beliefs. It is available in four versions: easy with noise, easy without noise, hard with noise, and hard without noise.
APA PsycInfo is the premier abstracting and indexing database covering the behavioral and social sciences. It provides over 5,000,000 peer-reviewed records, 144 million cited references, and spans 600 years of content. The database is updated twice-weekly and includes research in 30 languages from 50 countries.
The DS4C dataset is a structured collection of COVID-19 data from South Korea, based on reports from the Korea Centers for Disease Control & Prevention (KCDC) and local governments. It includes information on infections, patient routes, and various analyses. The dataset has been used for multiple research and visualization projects.
The American National Mental Health Services Survey (N-MHSS) is an annual survey conducted by the Substance Abuse and Mental Health Services Administration (SAMHSA) to collect data on mental health treatment facilities across the United States. The survey provides detailed information on the services and characteristics of these facilities, helping to inform policy and improve mental health care.