This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
The dataset tracks key measures such as age, gender, and country to determine overall prevalence, along with responses surrounding employee access to care options; whether mental health or physical illness are being taken as seriously by employers; whether or not anonymity is protected with regards to seeking help; and how coworkers may perceive those struggling with mental illness issues such as depression or anxiety. With an ever-evolving landscape due to new technology advancing faster than ever before – these statistics have never been more important for us to analyze if we hope to remain true promoters of a healthy world inside and outside our office walls.
The Chinese Psychological QA DataSet is a collection of 102,845 community Q&A pairs related to psychological topics., providing a rich source of data for research and development in psychological counseling and AI applications. Each entry includes detailed question and answer information, making it a valuable resource for understanding user queries and generating appropriate responses.
Psy-Insight is a bilingual, interpretable multi-turn dataset for mental health counseling dialogues. It includes 6,208 rounds of multi-turn counseling dialogues in English and 5,776 rounds in Chinese, annotated with step-by-step reasoning labels and multi-task labels. This dataset is designed to support the application of large language models in mental health and is suitable for tasks such as emotion classification and psychological treatment interpretation.
The Mental Health Corpus contains labeled comments on mental health issues, used for sentiment and toxic language analysis.