The SimpleToM dataset is designed to evaluate models' ability to reason about beliefs and actions in various scenarios. It includes a variety of situations with multiple choice questions and answers, covering topics such as food items, personal belongings, and service industries.
The SimpleToM dataset provides a comprehensive set of scenarios to test models' understanding of beliefs and actions. Each scenario includes a context, a question, and multiple choice answers, making it suitable for researchers working on theory of mind and natural language processing. The dataset is available on Hugging Face, ensuring easy access and integration with existing models.
The National Study of Mental Health and Wellbeing provides key statistics on mental health issues in Australia, including the prevalence of mental disorders, consultations with health professionals, and the use of mental health-related medications. The study covers a wide range of mental health conditions and offers insights into the impact of mental health on individuals and society.
This paper discusses Helply - a synthesized ML training dataset focused on psychology and therapy, created by Alex Scott and published by NamelessAI. The dataset developed by Alex Scott is a comprehensive collection of synthesized data designed to train LLMs in understanding psychological and therapeutic contexts. This dataset aims to simulate real-world interactions between therapists and patients, enabling ML models to learn from a wide range of scenarios and therapeutic techniques.
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.