FineWeb-2 is a dataset of over 15 trillion tokens of cleaned and deduplicated English web data from CommonCrawl. This is the second iteration of the popular 🍷 FineWeb dataset, bringing high quality pretraining data to over 1000 🗣️ languages.The 🥂 FineWeb2 dataset is fully reproducible, available under the permissive ODC-By 1.0 license and extensively validated through hundreds of ablation experiments.In particular, on the set of 9 diverse languages we used to guide our processing decisions, 🥂 FineWeb2 outperforms other popular pretraining datasets covering multiple languages (such as CC-100, mC4, CulturaX or HPLT, while being substantially larger) and, in some cases, even performs better than some datasets specifically curated for a single one of these languages, in our diverse set of carefully selected evaluation tasks: FineTasks.
FineWeb-2 is a large-scale dataset designed to provide high-quality web data for training large language models. This is the second iteration of the popular 🍷 FineWeb dataset, bringing high quality pretraining data to over 1000 🗣️ languages.The 🥂 FineWeb2 dataset is fully reproducible, available under the permissive ODC-By 1.0 license and extensively validated through hundreds of ablation experiments.In particular, on the set of 9 diverse languages we used to guide our processing decisions, 🥂 FineWeb2 outperforms other popular pretraining datasets covering multiple languages (such as CC-100, mC4, CulturaX or HPLT, while being substantially larger) and, in some cases, even performs better than some datasets specifically curated for a single one of these languages, in our diverse set of carefully selected evaluation tasks: FineTasks.
This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
This study surveys the attitudes and behaviors of US higher education faculty members regarding online resources, the library, and related topics. It covers a wide range of issues, including faculty dependence on electronic scholarly resources, the transition from print to electronic journals, publishing preferences, e-books, and the preservation of scholarly journals.
The iBVP dataset is a collection of synchronized RGB and thermal infrared videos with PPG ground-truth signals acquired from an ear. It includes manual signal quality labels and dense signal-quality assessment using the SQA-PhysMD model. The dataset is designed to induce real-world variations in psycho-physiological states and head movement.