An evolving list of electronic media datasets used to model mental health status. This repository curates a variety of datasets from different sources, including social media platforms, online forums, and academic studies, to support research in mental health modeling and AI applications.
The Mental Health Datasets repository is a curated list of datasets that can be used to model and analyze mental health status. It includes datasets from various sources such as Reddit, Twitter, and online support forums, covering a wide range of mental health conditions like depression, anxiety, and suicidal ideation. This resource is invaluable for researchers and developers working on AI models for mental health support and intervention.For an overview of existing datasets, please consider reading the paper 'On the State of Social Media Data for Mental Health Research'.
Psy-Insight is a bilingual, interpretable multi-turn dataset for mental health counseling dialogues. It includes 6,208 rounds of multi-turn counseling dialogues in English and 5,776 rounds in Chinese, annotated with step-by-step reasoning labels and multi-task labels. This dataset is designed to support the application of large language models in mental health and is suitable for tasks such as emotion classification and psychological treatment interpretation.
This dataset contains 20,000 labelled English tweets of depressed and non-depressed users. The data is collected using the Twitter API and includes feature extraction techniques such as topic modelling and emoji sentiment analysis. It is designed for mental health classification at the tweet level.
The ISSP is a cross-national collaboration program conducting annual surveys on diverse topics relevant to social sciences. It includes members from various cultures around the globe and provides free access to collected data and documentation.