The Weibo User Depression Detection Dataset is a large-scale dataset for detecting depression in Weibo users. It includes user profiles, tweets, and labels indicating whether the user is depressed. The dataset is useful for researchers working on mental health and social media analysis.
The Weibo User Depression Detection Dataset provides a comprehensive set of user data, including nicknames, genders, profiles, birthdays, follower and following counts, and tweet content. Each user is labeled as depressed or normal, making it suitable for machine learning models to detect depression from social media data.
This dataset contains 20,000 labelled English tweets of depressed and non-depressed users. The data is collected using the Twitter API and includes feature extraction techniques such as topic modelling and emoji sentiment analysis. It is designed for mental health classification at the tweet level.
The WHO report on adolescent mental health describes actions undertaken by international development organizations to address adolescents’ mental health needs at the country level. It highlights the inadequacy of current efforts and the need for more coordinated and comprehensive interventions.
The Substance Abuse and Mental Health Data Archive (SAMHDA) provides a comprehensive collection of data sets related to mental health and substance use. It includes ongoing studies, population surveys, treatment facility surveys, and client-level data, offering valuable insights for researchers and policymakers.