The Weibo User Depression Detection Dataset is a large-scale dataset for detecting depression in Weibo users. It includes user profiles, tweets, and labels indicating whether the user is depressed. The dataset is useful for researchers working on mental health and social media analysis.
The Weibo User Depression Detection Dataset provides a comprehensive set of user data, including nicknames, genders, profiles, birthdays, follower and following counts, and tweet content. Each user is labeled as depressed or normal, making it suitable for machine learning models to detect depression from social media data.
HeartLink is an empathetic psychological model that uses a large language model fine-tuned on a large empathetic Q&A dataset. It can perceive users' emotions and experiences during conversations and provide empathetic responses using rich psychological knowledge, aiming to understand, comfort, and support users. The responses include emoji expressions to bridge the gap with users, offering psychological support and help during consultations.
Lingxin (SoulChat) is a psychological health large model fine-tuned with millions of Chinese long-text instructions and multi-turn empathetic dialogue data in the field of psychological counseling.
This repository provides code and data for automatic depression detection using a GRU/BiLSTM-based model. It includes an emotional audio-textual corpus designed to support the diagnosis of psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder.