The IC-AnnoMI repository contains source code and a synthetic dataset generated through in-context zero-shot LLM prompting for mental health and therapeutic counselling. IC-AnnoMI is a project that generates contextual MI dialogues using large language models (LLMs). The project contains source code and a synthetic dataset generated through zero-shot prompts, aiming to address the data scarcity and inherent bias problems in mental health and therapeutic consultation.
IC-AnnoMI is an official repository that employs Large Language Models (LLMs) to generate in-context Motivational Interviewing (MI) dialogues. The repository includes a dataset folder with annotated MI dialogues across psychological and linguistic dimensions. It also provides a test set for experiments. The project aims to address scarce data and inherent bias challenges in mental health and therapeutic counselling by leveraging the capabilities of LLMs. The IC-AnnoMI project generates contextual MI dialogues through large language models and provides a synthetic dataset for training and testing MI dialogue systems. The project contains detailed annotation files covering dialogue annotations in psychological and linguistic dimensions, suitable for research in mental health and therapeutic consultation.
An evolving list of electronic media datasets used to model mental health status. This repository curates a variety of datasets from different sources, including social media platforms, online forums, and academic studies, to support research in mental health modeling and AI applications.
Psych-101 is a dataset of natural language transcripts from human psychological experiments, comprising trial-by-trial data from 160 experiments and 60,092 participants, making 10,681,650 choices. It provides valuable insights into human decision-making processes and is available under the Apache License 2.0.
HappyDB is a crowd-sourced collection of 100,000 happy moments designed to advance the understanding of happiness through text analysis. The database is publicly available and aims to support research in natural language processing (NLP) and positive psychology. It provides insights into the causes of happiness and suggests sustainable actions for improving well-being.