This dataset contains survey responses from individuals in the tech industry about their mental health, including questions about treatment, workplace resources, and attitudes towards discussing mental health in the workplace. By analyzing this dataset, we can better understand how prevalent mental health issues are among those who work in the tech sector—and what kinds of resources they rely upon to find help—so that more can be done to create a healthier working environment for all.
The dataset tracks key measures such as age, gender, and country to determine overall prevalence, along with responses surrounding employee access to care options; whether mental health or physical illness are being taken as seriously by employers; whether or not anonymity is protected with regards to seeking help; and how coworkers may perceive those struggling with mental illness issues such as depression or anxiety. With an ever-evolving landscape due to new technology advancing faster than ever before – these statistics have never been more important for us to analyze if we hope to remain true promoters of a healthy world inside and outside our office walls.
Collaborative assessment as an intervention in the treatment of mental Illness: a systematic review
The Weibo User Depression Detection Dataset is a large-scale dataset for detecting depression in Weibo users. It includes user profiles, tweets, and labels indicating whether the user is depressed. The dataset is useful for researchers working on mental health and social media analysis.
MentalManip数据集是由Wang等人(2024b)引入的,专门用于检测和分类心理操纵的对话数据集。该数据集包含4000个多轮虚构对话,来源于在线电影剧本,并进行了多层次的标注,包括操纵的存在、操纵技巧和目标脆弱性。数据集的创建旨在通过高质量的标注确保数据的一致性和准确性,从而支持心理操纵检测的研究。