This dataset contains 20,000 labelled English tweets of depressed and non-depressed users. The data is collected using the Twitter API and includes feature extraction techniques such as topic modelling and emoji sentiment analysis. It is designed for mental health classification at the tweet level.
The Depression: Twitter Dataset + Feature Extraction is a valuable resource for researchers and developers working on mental health classification. It includes 20,000 labelled English tweets, collected using the Twitter API. The dataset provides feature extraction techniques such as topic modelling and emoji sentiment analysis, making it suitable for various machine learning and data analysis projects. The data is essential for understanding and predicting mental health conditions from social media content.
The ToM QA Dataset is designed to evaluate question-answering models' ability to reason about beliefs. It includes 3 task types and 4 question types, creating 12 total scenarios. The dataset is inspired by theory-of-mind experiments in developmental psychology and is used to test models' understanding of beliefs and inconsistent states of the world.
Tobii Pro Lab is a comprehensive eye tracking software designed for behavioral research, offering a complete solution for researchers to conduct experiments from test design to data analysis.
SoulChat2.0 is a framework for constructing the digital twin of psychological counselors, designed to support the development of AI applications in mental health. It includes a data generation module and a modeling module, enabling the creation of personalized counseling models based on limited real-world counseling cases.