Every veteran knows and has had a 'Gunny': Semper Fidelis. This dataset is designed for conversational AI systems to assist veterans from various military branches, including U.S. and U.K. armed forces.
Every veteran knows and has had a 'Gunny': Semper Fidelis. This dataset is designed for conversational AI systems to assist veterans from various military branches, including U.S. and U.K. armed forces. The dataset uses multiple personas from different branches (9) to be exact, each dedicated to providing support for veterans dealing with PTSD and transitioning to civilian life. The personas offer advice rooted in discipline, accountability, and mental resilience, while maintaining the appropriate tone and ethos of each military branch. Each persona emphasizes the importance of seeking professional help when necessary, without substituting for therapy, but there is no guarentee. All data was generated using Meta's - Llama-3.2-3B-Instruct.
The SimpleToM dataset is designed to evaluate models' ability to reason about beliefs and actions in various scenarios. It includes a variety of situations with multiple choice questions and answers, covering topics such as food items, personal belongings, and service industries.
The ToM QA Dataset is designed to evaluate question-answering models' ability to reason about beliefs. It includes 3 task types and 4 question types, creating 12 total scenarios. The dataset is inspired by theory-of-mind experiments in developmental psychology and is used to test models' understanding of beliefs and inconsistent states of the world.
HeartLink is an empathetic psychological model that uses a large language model fine-tuned on a large empathetic Q&A dataset. It can perceive users' emotions and experiences during conversations and provide empathetic responses using rich psychological knowledge, aiming to understand, comfort, and support users. The responses include emoji expressions to bridge the gap with users, offering psychological support and help during consultations.